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This paper considers the nature of stationary axisymmetric convection in a shallow 
rotating annulus or cylinder heated from below. The horizontal and vertical walls of 
the container are assumed to be perfect conductors and insulators respectively. The 
critical regime is considered in which the circulations due to the centrifugal force and 
the vertical gravitational instability are of equal significance. Among the effects of 
the centrifugal acceleration on the gravitational instability are a shift in the value of 
the Rayleigh number at  which instability sets in, a modification in the distribution and 
amplitude of convection cells in the container and, most significantly, a smooth 
transition to finite amplitude convection as the Rayleigh number is increased. 

1. Introduction 
The classical theory of BBnard convection in an infinite rotating fluid layer (see 

Chandrasekhar 1962, cha. 111) is based upon the Oberbeck-Boussinesq approximation 
in which the thermal expansion of the fluid is neglected except where coupled with the 
gravitational acceleration, g. However, experiments by Koschmieder (1 967) have 
suggested that in many circumstances the coupling of the thermal expansion and the 
centrifugal acceleration may play a significant role. Several theoretical studies have 
considered motions generated in convective systems by such centrifugal effects. 
Barcilon & Pedlosky (1  967) considered the large-scale circulatory motions generated 
in a rapidly rotating cylinder when subject to a stable stratification, thus explicitly 
avoiding the onset of thermal instability. Homsy & Hudson (1969) extended this work 
to situations in which the centrifugal acceleration is large compared to that of gravity, 
and also to the case of unstable stratification (1971) where a stability analysis of the 
rapidly rotating centrifugally driven flow suggested an increase in the critical Rayleigh 
number due to the basic circulation, except possibly near the outer wall. Of course in 
this situation the centrifugal circulation necessarily dominates any circulation due to 
thermal instability. In  the present paper we shall consider the situation in which the 
two motions are of comparable magnitude. An analysis of the thermal instability is 
necessarily restricted to the neighbourhood of the onset of the corresponding con- 
vective motions and it then emerges that the appropriate ratio of centrifugal and 
gravitational accelerations is given by a rotational Froude number 

F = a2L&/g = O(L-'). (1.1) 

Here 0, d and Ld are respectively the angular velocity, height and outer radius of the 
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annulus or cylinder and the basic assumption of our theory is that 

Although we shall not consider cases in which overstability is the preferred mechanism 
of instability, the values of the Prandtl number and Taylor number defined in (2.8) 
below are otherwise completely arbitrary. 

Because the horizontal scale of the motion due to the vertical instability is small 
compared to the horizontal scale of the container, the method of multiple scales may 
be used to expand the solution using L-1 as a small parameter, except in regions near 
the vertical curved walls of the annulus, or in the case of a cylinder, except near the 
outer wall and the centre. This expansion procedure follows the ideas of spatial modula- 
tion developed by Segel ( 1969) and Newel1 & Whitehead (1  969) and more recently adap- 
ted to the type of cylindrical geometry with which we are concerned here by Brown & 
Stewartson (1978). They considered the non-rotating Bhard  problem in a shallow 
cylinder and showed that such an expansion can be matched to consistent solutions 
both at the centre and at the outer curved wall of the cylinder. Our amplitude equa- 
tion, determined in (4.1) below, may therefore be regarded as an extension to include 
both rotational and centrifugal effects although we shall see that the latter also result 
in an equally important contribution to the large-scale circulation in the cylinder. 

The amplitude equation (4.1) may also be regarded as an extension of that obtained 
by the present author (Daniels 1978). There the basic model was equivalent to a rotat- 
ing annulus in which both curvature and centrifugal effects were neglected, so that the 
width of the radial cross-section of the annulus must be taken as small compared to 
Ld and the value of P much less than that assumed in (1.1). One of the main purposse of 
the study, like that of Brown & Stewartson (1978), was to consider the effect of non- 
perfect insulation a t  the outer curved wall, which leads to a smooth transition to 
finite amplitude convection as the Rayleigh number is increased. The same effect could 
easily be incorporated in the present study but, as we shall see, in the rotating cylinder 
or annulus centrifugal effects characterized by (1 .1)  lead to a smooth transition even 
if the outer wall is perfectly insulated. 

In  $ 2 we consider the modifications to the equations of motion caused by the non- 
Boussinesq assumption ( l . l ) ,  and these are solved for the case of stress-free horizontal 
boundaries in $ 3 .  Solutions of the resulting amplitude equation are discussed in $ 4 and 
the modifications required for rigid boundaries in $ 5.  Further extensions of the theory 
to the case when just the upper surface is free are also discussed, and in $ 6  a comparison 
is made with the experimental results of Koschmieder (1967). 

L a  1. (1.2) 

2. The non-Boussinesq system 
The equations of motion are 

-+V.(pu*) aP = 0, 
at* 

p{Z+(u* .V)u*  = -pgk-Vp*+pV2u*+&V(V.u*), 1 
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where u*, p* ,  e* and p are the velocity, pressure, temperature and density of the fluid, 
and ,8 = -p-l(ap/ae*),, is the coefficient of thermal expansion. The specific heat at 
constant pressure, cp, thermal conductivity, k, and coefficient of viscosity, p, are taken 
to be constant and the bulk viscosity of the fluid is neglected; k is the vertical unit. 
vector. The equation of state is taken as 

p = po(1- “ O P *  - etl) ,  (2.2) 

where a. is a constant and po is the constant density at temperature B,*, which is taken 
as the temperature of the lower horizontal surface of the container. The origin of a set 
of cylindrical polar co-ordinates (r*, $*, x * )  is taken in this surface with z* axis along 
the axis of rotation and an axisymmetric motion is assumed so that a/aq5* = 0. We now 
define non-dimensional dependent variables of velocity, temperature and pressure by 
(u, v ,  w ) ,  0 and p ,  where 

K K‘ 
v* = fir* +- v(r, x ,  t ) ,  (u*, w*) = - (u, w )  ( r ,  z, t ) ,  d d 

Z* KV e* = e,*+(e,*-e,*)-+ -e(r , z , t ) ,  
d aogd3 

Here p;  is a constant basic pressure, 0: is the temperature of the upper surface of the 
container and Y = p/po and K = k/poc, are the kinematic viscosity and thermal 
diffusivity of the fluid a t  temperature 8;; 52 is the angular velocity of the container 
and r ,  z, t are non-dimensional co-ordinates and times defined by 

(2.4) 
K 

r = r*/d,  z = z* /d,  t = - t*. 
a 2  

The full set of equations (2.l) ,  (2.2) may now be written in the form 

I [ru( - RZ + ell, + [w( - RZ + e)],), 

I V2 

r 
U,+UU,+WU,----GT~~V -&+TG(-Rz+e), 

d (v,+uv,+wv,+--fanu) uv = +v-;), 
r 

where 

B(w, + UW, + ww,) = -pz  + u { v2w + - 3 v . u ) ] + v e ,  - 

ace, + ue, + we, - R ~ )  = v2e + €, 

d = l - G ( - R z + e ) , )  
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and 
212 

r 
uu, + wu, - - - i u2Tr  - (uw, + ww,) - 8(V. u ) ~  

(2.7) 
H + - (R, - RZ + 8) {pt + upr + wp, + gu2rTu - aw( G-l + Rz)}. 
B 

In  this system of equations the Taylor number T, Prandtl number u, Rayleigh number 
R, and three further parameters G, H and R, are defined by 

} (2.8) 
T = U = V / K ,  R = aogaye,* - e: ) /KV,  

G = KV/dSg, H = K2cXo/Cpd2, R, = a,gd38,*~/v. 

I n  these terms the Froude number P of (1 .1) .  is P = &rTGL, but we prefer to use 
G as the ‘centrifugal parameter’ of the system since the rotational effect charac- 
terized by the value of T then appears explicitly in the equations (2.5), the value of 
G being independent of the rate of rotation. 

The Boussinesq approximation is equivalent to the assumption that both G and c 
are negligible in (2.6) and (2.6) and in the non-rotating case this appears to be a good 
approximation in many situations, since both G and (especially) H/G are generally 
small (cf. Mihaljan 1962). In  rotating systems, however, while it is likely that terms 
involving H are still negligible, the centrifugal term of O(ru2TG) in the radial mom- 
entum equation may be significant if, as in many experimental situations, either 
r or T is large, even though G itself is small. In the present theory, then, we shall assume 
that Hisnegligible, so that 8 may be set to zero in (2.5) but shall choose the magnitude 
of G to be such that there is a significant interaction between the motions due to centri- 
fugal effects and to the vertical instability, as appears to be the case in the experi- 
ments of Koschmieder (1 967). Since our theory is to be based upon the assumption (1.2) 
we have r = O(L)  and it emerges (in 5 3 below) that if the horizontal surfaces of the con- 
tainer are either both stress-free or both rigid we should set 

cf = L-2Go, (2.09) 

Initially we assume the horizontal surfaces to be stress free and maintained at the 
where Go = O(1). 

constant temperatures 8,* and 8;’ so that 

8 = au/az = av/az = w = o at z = o , i .  (2.10) 

To fix ideas we shall take an annular geometry with curved vertical walls which are 
rigid and perfectly insulated so that 

ae/ar = Z L  = v = w = o a t  r = s,L,L, (2.11) 

where 0 c so c 1.  Of course for a complete cylinder the boundary conditions at the 
inner wall are not appropriate, although, as we shall see in 5 3 below, the work of Brown 
& Stewartson (1978) suggests that, except near the centre of the cylinder, the solution 
will not be significantly different from that obtained from the solution for the annulus 
in the limit as so + 0. 

It should be noted that the equation of state (2.2) is not strictly consistent with the 
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assumption of a container of fixed volume since any increase in temperature with time 
will result in an overall expansion of the fluid, thereby violating the mass conservation 
condition 

(2.12) 

obtained from the first of the equations (2 .1) ,  where V* and S* are the total volume 
and surface area of the container. However, although the coefficient of thermal expan- 
sion is not assumed to be negligible in the equation of continuity, its effect is too small 
to be significant here; any changes of the basic state with time may be assumed to be 
sufficiently slow to be incorporated in an insignificant seepage of fluid from the rim 
of the container. 

3. Expansion procedure 
Since the layer is shallow we may expect effects due to the vertical instability to 

become significant for Rayleigh numbers close to the critical value for the corresponding 
infinite layer. At values of cr and T for which the exchange of stabilities occurs, this 
critical Rayleigh number is a function of T alone, R,(T), given by 

where 
B, = 3(012+n2)2, (3.1) 

a2 = (in), ((in4 + T+ T*[n4+ T]4)* + (tn4+ T - T*[n4 +TI*)*] - i n 2 .  (3.2) 

Our analysis will provide solutions in the range 

R = R,(T)+L-26 (L  + 1 ,  -a < 6 < a). (3.3) 

3.1.  Interior solution 

Away from the vertical walls of the annulus the solution may be expanded in the form 

1,1 ( r , z , t )  = [ i J . - l [ ~ l + L - 2 [ i I + L - 3 ~ ~ 1 + . . . .  (3 .4)  

FOo(S) Po P1 Pz 

Here ui, vi, wi, 8,,p, (i = 0 , 1 , 2 )  are functions of r ,  x ,  s and Y, where 

s = L-4 (so < s < l ) ,  Q = L-2t, (3 .5)  

are slow variables of space and time appropriate to the dimensions of the container 
and the evolution of the motion for Rayleigh numbers (3 .3 )  close to the critical value. 

At order L-l the solution for u, which satisfies the boundary conditions (2.10) consists 
of a cellular part which varies on the short length scale r and is characterized by an 
amplitude function, A,(s, f), and a centrifugal part which is independent of the short 
length scale: 

(3.6) u, = (A,  eiar + A$ e-ioy) COB nx + $scr2TG, V,(z). 
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The corresponding solutions for v,, w,, O0, po and Po are 

v, = -- Ti (A,eiar + Ad e-iar) cos nz + &sa2TUoV,(z), 
a8 + n2 

ia wo = - Ir (Aoeiar - A,* e-iar) sin nz, 

e, = - iuR, 
(A,  eiaf - A,* e-iar) sin nz, 

n(u2 + n2) 

(3.7) 

where Po is a constant, and * denotes complex conjugate. 

conditions 
The centrifugal terms U,, V, and Po satisfy the system of equations and boundary 

- aT*V, = - 2P0 + uUG + RCz, T*Uo = V i ;  (3.8) 

v;= u;=o ( z = O ,  z = 1 ) .  

This reduces to a fifth-order system for V, with four boundary conditions: 

Q + T V ;  = -a-lRCT), VA = V l  = 0 (Z = 0, z = I ) ,  (3.9) 

but we shall see in 0 3.2 below that the fifth condition which uniquely determines the 
solution for V, is provided by the consistency of the solutions in the regions near the 
vertical walls of the annulus. This requires that V, be odd about z = 4, and we then 
obtain 

Po = &, V, = -a-lRcT-*(z-~)+ko(clcoshzl sinzl+c8sinh zlcoszl), (3.10) 

where 

The solution for Uo is similar to that for V, apart from the linear term in z and the radial 
motion in the annulus consists of horizontal velocities, which increase linearly with 8, 

in both inward and outward directions, reaching a maximum outward velocity at the 
upper surface z = 1 and an equal and opposite inward velocity at the lower surface 
z = 0, the centrifugal force on the cool heavy fluid at the top of the container being 
greater than that on the warmer, lighter fluid at the bottom. As T + co, the radial 
motion is confined mainly to thin Ekman layers of thickness O(T-f) along the two 
horizontal surfaces. 

At order L-2 both the cellular and centrifugal terms in (3.6) and (3.7) produce 
nonlinear contributions in the equations of motion which suggest a solution for u1 of 
the form 

(3 .12)  u1 = (Aleiar+Afe-iar) cosnz+ &i (Aoeiar-A,*e-iar)a2TG,s31(z), 
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where A,($, .7) is a further undetermined amplitude function. The curvature terms in 
the equations of motion (2.5) also enter the expansion at this stage, resulting in 
corresponding solutions for w,, w, and 0, of the form 

w1 = (B, eiar + Bf e-iar) sin nz + f ( A ,  cia* + A* 0 e-iar 1 a2 TG, W z )  + fa2TG,%(z), 

v, = (Cleiar + C,* e-iar) cos nz + &i(A,eiar - A,* e-iar) a2TG,s@,(z) 

where 
Ti ia aA, A 

Bl = , C, = (A,+-, [2=+<])9 

ia[a2 + n2] A ,  + [ns- a21 -O + n2- . 
D1 = - n(a2 + +)2 ( aA as 9 

(3.14) 

The equations for the centrifugal terms El, El, ZZl and 8, may be reduced to a single 
sixth-order equation for El: 

qi - 3a2Z$J + (T + 3a4) W; + a2(R, - a*) W1 

a2 
=-{ (bo+b,Uh+b,Ut)  cosnz+b,U,sinnz}, (3.15) 
a 

where 
b, = 3(a-  1) (a2+n2)2/c, b,= (2a4-a2n2-3+)/n2, 

b, = - 3, b, = (2T + 3a2a(a2 + n2) + a%r2 + 2n4 - a'),/. (3.16) 

while the boundary conditions El = T i ;  = 8; = B1 = 0 a t  the horizontal surfaces become 

w - Gi; = 0, * (0) = -* (1)  = - 
a( a2 + n2) 1 -  

The solution for @, is 

(3.17) 

- 
~1 = a, COB T Z  + a, cash k,(z - )) sin k2(2 - It) + a2 sinh k,(z - 4) cos k,(z - 4) 

+ e,(z - 4) sinnz+ (e,U,+ e,U,") sinnx + (e, Uh + e4 U:) cosnz, (3.18) 

where k = ?I (k, ?I ik,) are the four roots of the equation 

k6 - 3a2k4 + ( 3a4 + T) k2 + a2( R, - a4) = 0, (3.19) 

which in conjunction with the other two roots, fin, give rise to the three comple- 
mentary solutions associated with the constants a,, a, and a2. Note that since the 
boundary conditions (3.17) and right-hand side of (3.15) are odd about z = It, El must 
also be odd. Indeed, if either had contained components which were even about z = 4 
an inconsistency would arise since one of the even complementary solutions of (3.16;) 
for W1 is sin nz and so only five constants would be available to satisfy the six conditions 
(3.17). Had this been the case, centrifugal effects on the cellular motion would be more 
pronounced and the appropriate choice of the magnitude of G would have been O(L-3) 
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4-20 20 -20 20 

-20 20 -20 20 
FIGURE 1. Typical profiles of the centrifugal functions U,, V, and Q,, GI, 8,, e, for 

free-free boundaries: (a) c = 1, T = 102, ( b )  c = 1, T = 1 0 4 .  

in place of (2.9). The particular solutions associated with the constants e,, . . . , e4 (which 
may be determined in terms of b,, . . ., b3) may be restricted to at most third-order 
derivatives of U, since higher-order derivatives may be replaced using the relation 
Uk = -TU,. 

Having found W,, the solutions for ii, and 3, (which are even about z = 4) are deter- 
mined from 

- aii, + 9; = 0, 

U(CZ%, -3;) = - ~T&i1+ a cosnz+3sinnz),  n (3.20) 

in turn, using the boundary conditions E; = 0 at  z = 0 , l  to fix the coefficient of the 
complementary function cosh a(z - 8) in the solution for El. A corresponding term 
sinh a(z - 8) occurs in the solution for 8,, which is odd about z = 8 and may be deter- 
mined from 

a2R, U, a2g1-Bi = R,W,- sinnz, 8,(0) = iS;cl) = 0. 
n(a2 + 772) 

(3.21) 

The solutions for the centrifugal terms W, and 0, are found to be 

U,dz, el= ( zR, Iol - Rcjoz) ( IOz' K(z") dz") dz'. (3.22) 

The solution for W, automatically vanishes a t  z = 1 since U, is odd about z = B, a 
reflexion of the requirement that the total flux across any vertical line in the vertical 
cross-section of the annulus must be zero. 
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At order L-3 the solution for w2 contains a component eiarW2(z, s, 7") and W2 may be 
shown to satisfy an equation similar to that (3 .15)  for W,, but with a right-hand side 
which now contains both even and odd components which include effects resulting 
from curvature, nonlinear interactions and variations with 7". It may be shown that 

in addition to W 2  = 0 at  z = 0, I so that multiplication of both sides of the equation by 
sin nz and integration from z = 0 to z = 1 yields a condition on the terms which appear 
on the right-hand side. Only the even components contribute to this condition and we 
finally obtain 

( 2 n 2 + a 2 [ 3 u -  11) 

(3.23) 

r(u, T) = (a4 - n4) W, Uo sin m dz - n2T) W,Vosin nz dz + a2u 

+ 2an(a2 + n2) lo1 G, Uo cos nz dz + Tian (ill V, + V ,  Uo) cos nz dz 
10, 

-n(a2+nqo1 8,coanzdz. (3.24) 

Products of the centrifugal terms Uo, V, with Z,, V l ,  W, and 8, in the nonlinear terms in 
the equations and the centrifugal term in 13, both contribute to the final term in the 
amplitude equation, whose dependence on s2 reflects the fact that centrifugal effects 
are strongest in the outer parts of the annulus. The contribution from Go in the non- 
centrifugal terms in the equations ( 2 . 5 )  also results in a shift in the effective value of the 
Rayleigh number (characterized by 8) -a correction due to the slightly non-Boussinesq 
nature of the fluid. 

3.2. The side-wall solution 
The interior solution obtained above must be matched to consistent solutions near each 
curved wall of the annulus in order to obtain the boundary conditions for Ao(s, 7"). We 
therefore fix attention on the region near the outer wall where 

r1 = r - L  = O(1). (3.25) 

Nonlinear effects are not significant here and some general properties of the linear 
equations are relevant. If u - L-%(r,, z) ,  v - L-%(r,, z )  then from the second equation 
of (2 .5 )  we have 

(3 .26)  
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But flux considerations imply that the left-hand side is zero and since the upper and 
lower surfaces are stress-free we obtain 

(3.27) 

where K ,  and K ,  are constants. But V = 0 on rl = 0 so that K ,  = 0 and provided that 
V = O( 1) as rl + 00 we also have Kl = 0. Thus 

lo1 s(rl, z )  dz = 0, (3.28) 

and, in particular, taking the limit as rl + 00 and matching with the interior solution 
(3.7) implies that 

(3.29) 

This is the fifth condition which uniquely determines the solution of the centrifugal 
system (3.9) and implies that both U, and V, are odd about x = 3. 

u = L-l ((A,( 1 , f )  eiat + A,*( 1, ?) e-iar+ E l e a l r l )  cos ~ T Z  + x H, (rl) cos nm 

We find that the explicit solution for u in the end region has the form 
Q) 

n=2 

+ &f?PG, U,(z) + O(L-,), (3.30) 

where a, = (3n2+ 2a2)4 and El is a real constant. The functions R.(r,) (n = 2,3,  ...) 
are each linear combinations of three exponential solutions which decay as rl --f - 00, 

(see Daniels 1978). The solution (3.30) then matches with the interior solution (3.6) as 
r1 -+ - 00, and satisfies the boundary condition u = 0 at  the wall rl = 0 provided that 

(A,( 1, .T) eiaL + A,*( 1 , T )  e-iaL + El) cos 71% + C. Hn(0) cos nm = - &Goa2TUo(z). (3.31) 

The end-region solutions for v, w and 8 are expressed in a similar form to that for 
u although those for 8 and v contain a further set of arbitrary constants Fn (n = 1,2, . . .) 
(see Daniels 1978). Satisfaction of the remaining three boundary conditions in (2.11) 
then leads to three more equations to be solved in conjunction with (3.31) for each set 
of four unknown constants. The first Fourier components of U, and V, determine the 
leading set (n = 1) as the solutions X,, X,, El ,  #" of the system 

Xl + El = - *Go a2T lo1 U, cos mdz, 

) 

m 

n=2 

aX,+a,E, = 0, 

(3.32) 

where 
X ,  = A,(l,.T)eiaL+Ao*(l,.T)e-il+L, X, = i(A,(l,.T)ei"L-A,*(l,.T)e-iaL). (3.33) 

From the properties of U, and V, and the resulting solutions for X, and X, we obtain 

oTG,al(n2 + 2a2)4 R, e-iSo, 
2 4 3  (7r4+T)n2 

A,(l ,Q) = (3.34) 
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where 

1, = aL+tan-l - . (3 (3.35) 

Thus the second and most striking effect of the centrifugal acceleration is to provide 
a non-zero boundary condition for the cellular amplitude function at the outer wall 
s = 1.  For the annulus a similar condition will provide the value of A,(s,, ?) to complete 
the boundary conditions for the solution of (3.23), the major difference from (3.34) 
being a reduction in the right-hand side by the factor so. Thus if we consider the limit 
so -+ 0, the inner boundary condition on A ,  is 

A,(O,T) = 0 (3.36) 

to leading order. Of course this argument does not allow us to consider the corresponding 
solution as that for a complete cylinder, since once so = O(L-l) the curvature effects 
near the centre of the container will appear in the equations a t  leading order and must 
be taken into account. However, Brown & Stewartson (1978) have considered this 
problem in the non-rotating case and their results strongly suggest that, even if the 
central section is included in the flow field, the boundary condition (3.36) is still 
appropriate, although a closer examination of the behaviour of A, near S = O  (Brown 
& Stewartson 1979) is required to detect the precise nature of the relatively weak 
motion which occurs at the onset of instability. 

---1 

4. Solutions of the amplitude equation 

the form 
The equation (3.23) and boundary conditions (3.34) and (3.36) may be reduced to 

8A 82.4 1 - = - + SA + s2yA - - A 1 A J a  sgn ( f ) ,  
a7 as2 8 

A(0)  = 0, A(1) = A, 
where 

and 

The transformation from A, to A effectively removes the curvature terms from the 
equation, as in the non-rotat$ing study of Brown & Stewartson (1978). The constant 
f is unchanged from its two-dimensional value (see Daniels 1978) and can be either 
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2 

FIGURE 2. Contours of the centrifugal parameter r as a function of u and T. Also shown are (i)  
the region in which overstability is preferred to the exchange of stabilities (to the left of curve 
(a ) ,  taken from Veronis 1959) and (ii) the region of subcritical instability ( t < O )  (to the left of 
curve ( b ) ,  taken from Daniels 1978). 

positive or negative, suggesting that both supercritical and subcritical behaviour will 
be possible. The sign of the centrifugal parameter y is the same as that of l?(cr, T) given 
by (3.24) and, as shown in figure 2, can also be positive or negative, depending on the 
values of CT and T. The shift in the value of S in (4.3) due to Go is positive for T < 2360 
and negative for T > 2360. 

The nature of the solution of (4.1) will depend upon the value of each of the four 
independent parameters 8, u, T and Go which determine the values of 6, y ,  8 and h 
through the transformations (4.3)-(4.6). The effect of the parameter h has already been 
discussed in previous studies of related systems (Daniels 1977, 1978; Brown & 
Stewartson 1978) where its non-zero value represents an imperfect insulation of the 
side walls of the container; the bifurcation of the solution for A at a critical value of S 
when h = 0 is replaced by a smooth transition as the Rayleigh number increases. Here 
the size of A is fixed by (4.6) and, provided that Go, T and 6 are non-zero, h is strictly 
positive. 

4.1. Solutions for Go < 1 

If Go 4 1 we may write A = hoGo, where A,, = O(1) and the steady solution of (4.1) 
develops smoothly from the linear solution 
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A = #oho~in6b/~in6* (0 < 6 < re), 
into the nonlinear form 

A = G ~ A ~ B ~ S ~ I W S + O ( G , ) ,  

in the region yo = A,-,-nGo-8(6- n2) = O( l ) ,  where 8, is the solution of 

s g n ( ~ ) p o d ~ - ~ y o d o - n  = 0 (Po = 0-830 ...), (4.9) 

which matches with (4.7) as yo -+ -a. Note that the motion (4.8) due to the vertical 
instability now dominates the centrifugal circulation, which is O(Go). If C; > 0 the value 
of 8, continues to increase as yo -+ 00 and (4.8) develops into a full nonlinear solution of 
the system (4.1) for 13 > r2, eventually attaining the limiting form 

A N 6*s* (0 < s < I),  (4.10) 

as 6 -+ 00, representing convection cells of uniform strength across the width of the 
container. Other real solutions of (4.1) are found to be unstable, details of the stability 
analysis, evolution properties and derivation of (4.9) for g > 0 being given by Brown & 
Stewartson (1978). If 5 c 0, the solution of (4.9) for 8, which evolves from (4.7) no 
longer continues to increase with yo but reaches a turning point at  yo = - (54n2p0)+, 
where it becomes unstable and matches as yo -+ -00 with an unstable nonlinear 
solution of (4.1) in the region 6 < 7 ~ 2 .  This takes the limiting form 

A N (-2S)ts*sech(-6)*s (0 < s < l) ,  (4.11) 

as 6 -+ - co. This type of subcritical behaviour and the associated phenomenon of 
bursting is discussed in greater detail by Daniels (1978). 

4.2. Solutions for T $ 1 

We have seen that, with Go Q 1 and finite T ,  centrifugal effects appear mainly through 
the parameter A, evoking an early appearance of convection cells a t  the outer edge of 
the container as the Rayleigh number is increased. Since y = O(G%) its effect in the 
equation (4.1) is of little significance in this situation. However, with Go = O(1) or even 
with Go < 1 if T 9 1, the parameter y may play a significant role in (4.1). In general, 
depending on whether I? is positive or negative, its effect will be to either diminish or 
increase the effective value of the scaled Rayleigh number, 6, with a strength propor- 
tional to the square of the local radius. To see how this can occur we consider the 
limiting situation as T -+ 00. The centrifugal circulation is then mainly confined to 
thin boundary layers around the walls of the container. We have 

(4.12) 

so that 5 > 0 andfexcept near u = 1, y > 0. We may write 

y = y1T2, h = A,T), (4.13) 

where y,, A, = O( 1) .  Significant changes in the solution of the amplitude equation then 
occur for Rayleigh numbers in the range 

6 = TV,, 6, = O(l), (4.14) 
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when the amplitude of the motion is 

A = TA,, (4.16) 

where A ,  is order one and, for steady solutions, satisfies the equation 

(4.16) 
a2A, 1 
as2 + T2W, + 8%) 4 - ; -43 = 0, 

with boundary conditions 

A,(O) = 0, Al ( l )  = T)h,. (4.17) 

Although the size of h suggests a different scaling from (4.15), as evidenced by the 
second condition of (4.17), its effect is limited to a boundary layer near the outer wall, 
where s1 = Tg(s- 1) = O(1).  Here the first and last terms of (4.16) balance and 

A , x T * (  J 2  hi ) (-a < s1 < O ) ,  
J 2  - his1 

(4.18) 

so that A, N - T )  J2 syl as s1 + -a. 
The solution of (4.16) where s = O(1) is crucially dependent upon the values of 8, 

and y,; we take y1 > 0. For 8, < - y1 the solution for A ,  where s = O( 1) is essentially 

A,(s) = 0 (4.19) 

and at s = 1 this adjusts to (4.18) through a boundary layer where s2 = T(s - 1 )  = O(1). 
Here A ,  w A,($,) and 

(4.20) 
d2Jl 
ds; -+(8,+y,)A,-A; = 0, 

and matching requires 

The solution is 
A,+ O (s,+ -a), A, - - J2 SF' (8,' 0). (4.21) 

(4.22) 

For -7, < 8, < 0 the solution (4.19) still holds inside the critical radius 

= ( - 61/7,)t (4.23) 

but outside we expect the stable solution of (4.16) to be 

A ,  NU d(8, + yls2)4, (4.24) 

so that the amplitude of the cells now increases from zero a t  thevalue of s given by (4.23) 
to a maximum value at  s = 1. Here the solution again adjusts to (4.18) through the 
boundary layer where s2 = O( 1)  but the appropriate boundary conditions for A, are now 

A, -+ (8,+y1)# (92 --f -a), A, -425,l 

and the solution of (4.20) is 

(82 -+ 01, (4.25) 

(4.26) 
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-5 5 s3 

FIGURE 3. The solution of the nonlinear Airy equation (4.28) 
with boundary conditions (4.29). 

In  the neighbourhood of the critical radius given by (4.23) the transition from (4.19) 
to (4.24) occurs in the region where 

and 

(4.27) 

(4.28) 

Matching with (4.19) and (4.24) implies that 
- 

2, = O( -s3)-f exp ( -  Q ( -  s3)3) (s3 3 -a), A, N s t  (s3 3 a), (4.29) 

and the solution was found numerically by computing forward from s3 = ~ 3 0  (taken as 
- 10) by appIying a small positive increment to the value of A,. Too large an increment 
results in the development of the singular solution 2, N 2 (s30 - s3)-l at some point ~30, 
while too small an increment leads to the evolution of the asymptotic Airy function 
solutions as s3 -+ co. The correct value is thus obtained iteratively and leads to the 
required behaviour (4.29), with J,(O) = 0.52.. . , Bl(0) = 0.42.. . (see figure 3). 

At S, = 0 the critical radius reaches the inner limit s = 0 and for 8, > 0 the interior 
solution (4.24) applies for all 0 c s c 1. At the outer wall (4.26) and (4.18) are still 
appropriate while a t  8 = 0 there is a further region where s = O(T-l) and only the 
centrifugal term in (4.16) may be neglected. The solution here is the same as that found 
numerically by Brown & Stewartson (1978, equation (5.13)). 

We conclude that if T is large so that, except for c N 1, y is positive, the centrifugal 
term in equation (4.1) leads to a decrease in the value ofthe Rayleigh number at which 
cellular convection sets in. The amplitude of the motion increases with radius and 
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initially (for 8, < 0)  is restricted to the region outside the critical radius (4.23). As the 
Rayleigh number increases, this radius decreases to zero and for 6, > 0 cellular con- 
vection occurs throughout the container, initially increasing in strength with radius, 
but ultimately (as 8, -+ m) attaining the uniform distribution (4.10). 

Although the region of parameter space in which y < 0 is restricted to the neighbour- 
hood of IT = 1 when T is large (see figure 2), ib similar solution structure to that outlined 
above may be envisaged. The main differences are that, except for the side-wall effect 
(4.18), cellular convection is now initially restricted to the region inside the critical 
radius s = (al/ - yl)* and first occurs at  much higher Rayleigh numbers (6, > 0).  As 
8, -+ - y1 the critical radius reaches the outer wall, (4.24) is then valid for all 0 < s < 1 
and the uniform distribution (4.10) is again attained as 6, -+ 00. 

5. Rigid horizontal surfaces 

from the repIacement of (2.10) by the more realistic conditions 
In this section we consider the modifications to the analysis of $9 3 and 4 resulting 

u = v = w = O = O  at z = O , l ,  (5.1) 

appropriate to rigid horizontal surfaces. The vertical eigenfunctions are no longer 
sinusoidal and we must now assume interior solutions of the form 

uo = (Aoeiar +A,* e-iar) @'(z) + )sa2TG0 Uo(z), 

vo = (Aoeiav +A,* e-iar) V(z)  + )sa2TG0V,(z), 

0, = i(Aoeiar-Ate-iar) @(z). 

The functions a, 0 and B satisfy 

(5.3) 

0'' - a20 - R,a@ = 0, 

v'' - a2 J' - Ti@' = 0, 

OiV - 2a2@" + a4@ + 010 + Ti V' = 0, 

and the critical wavenumber a and Rayleigh number R, must be determined from the 
solution of these equations which satisfies the conditions 

@ = V = @ = @ '  = 0 (2  = 0, 1),  (5.4) 

and a t  which dR/da = 0. It may be shown from (5.3) that the latter condition is 
equivalent to 

2a @a + 2@@ - 2aV2 - 4a@@" + 4a3W dz = 0. I=lo (z 1 (5 .5 )  

It is clear that V will be odd about z = fr while and 0 will be even. 
In  the centrifugal system (3.9) the boundary conditions now become V, = Vg = 0 a t  

z = 0 , l  and it no longer follows from (3.26) that V, dz = 0. However, flux considera- l o 1  
tions require that Uo dz = 0 and from the second equation of (3.8) we obtain l o 1  
VA(0) = VA(1). Thus the fifth-order system for V, is again completed and a solution 
similar to (3.10) can be constructed. As in the free case, both U, and V, are odd about 
z = and some profiles are shown in figure 4. 
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(a) ( b )  
FIGURE 4. Typical profiles of the centrifugal functions U, and V, for rigid-rigid 

boundaries: (a )  u = 1, T = 102; ( b )  u = 1, T = lo'. 

At order L-2 the solutions for wl, v1 and 8, contain components 

(wl, vl, el) = (ad i (z ) ,  iV(z), - B ( z ) )  eiar t . . . (5 .6 )  
- _  

and the functions 0, V and 6 satisfy equations of the form (5.3) but with the three zero 
right-hand sides replaced by Fl, F2 and F3, respectively, where 

Fl = & 2 T G o ~ ~ A o U o 0 - ~  2 - + 2  0, ( a:o t) 
F2 = &TGosaAo(Uo V - Vh 0) -a 

Multiplication of the equation for 0 by B and that for 
tion from z = 0 to z = l now yields 

by 0, subtraction and integra- 

and from a similar treatment of the other equations 

and 

(5.9) 

(5.10) 

having invoked the boundary conditions (5.1). Combining these three results we find 
that in order that the solution a t  order L-2 be consistent we must have 

(5.11) 
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Substitution from (5.7) shows that this reduces to 

(8Ao/8s + A0/2s) I = 0 (5.12) 

and so, by ( 5 4 ,  is satisfied. 
The crucial factor in the derivation of (5.12) from (5.11) is that only the even parts of 

F’ and Ed, and the odd part of T2, are significant and therefore, since, as in the stress-free 
case of $3 ,  both Uo and V, are odd, the centrifugal terms associated with Go in (5 .7)  make 
no contribution. Thus we may again proceed to order L-3 and envisage an amplitude 
equation for A of the same form as (4.1) although the coefficients of the various terms 
now have to be determined numerically from appropriate integrals of the various 
eigenfunctions @, 0 and P and the centrifugal terms Uo and V,. The determination of 
the boundary conditions for A also presents a considerable numerical task, for the 
eigensolutions of (5.3) are no longer orthogonal as in the stress-free case and so the 
simple set of equations obtained in (3.32) is now effectively replaced by an infinite set. 
However, in principle we may suppose that a value for A at s = 1 proportional to Go 
is again obtained. 

If the lower surface of the container is rigid but the upper surface is stress-free it 
seems likeIy that the modifications to the analysis of $ 5  3 ,4  will be more severe since 
the system for the centrifugal velocity V, must now be solved subject to the boundary 
conditions 

v;= V{ = o  ( z = l ) ,  V , =  v;= v;=o ( z = O ) .  (5.13) 

Here the condition Pi(0) = 0 is again derived from the flux requirement Uodz = 0. 

Thus U, and V, are no longer odd and so will almost certainly make a non-zero contribu- 
tion in the condition (5.1 1) which will therefore no longer be consistent with (5.5). If 
this is the case it suggests that the appropriate magnitude for Go in (2.9) for the rigid- 
free case is O(L-3) and the amplitude equation will contain a term Go isA in place of 
GtsZA. Moreover the boundary condition for A at s = 1 will be A = 0 to leading order 
and the actual centrifugal circulation will be relatively unimportant in this situation. 
It is hoped to consider these questions further in a future paper. 

10’ 

6. Discussion 
We have considered the effect of centrifugal acceleration on the patterns of cellular 

convection which occur at  the onset of thermal instability in a rotating container. The 
theory assumes axisymmetric convection of the type observed by Koschmieder (1967) 
and by appropriate choice of the order of magnitude of the rotational Froude number 
( l . l ) ,  restricts attention to the critical regime in which the motions due to the centri- 
fugal force and the vertical instability are of equal magnitude. For free-free or rigid- 
rigid horizontal surfaces, the centrifugal acceleration is shown to have a double effect. 
The most significant is the smooth transition to finite amplitude convection represented 
by the non-zero boundary condition for the cellular amplitude function A ,  an effect 
prophesied by Koschmieder (1967) and clearly evident in the experimental results. The 
second represents the coupling of the vertical instability with centrifugal effects 
through the nonlinear terms in the equations of motion and is represented by the 
appearance of the new term proportional to ys2A in the amplitude equation, where y 
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r = O  r = L  

6 = -100 

6 = -50 

s = -10 

S = - l  

s = 100 

FIGURE 5 .  A typical transition to finite amplitude convection showing the streamlines in the 
cross-section of the container at intervals of 0.5, as determined by (3.6). The parameter values 
are Q = 1, T = 102, C, = 0.1 and approximate solutions for A of the form 

and A = 
A = A sinh (-8)) sjsinh (-814 for S < 0, 

for S > 0 are utilized. 

may be positive or negative, depending on the values of the various parameters of the 
problem. This effect is more subtle and, as shown in 5 4, in some parameter regimes can 
significantly affect the distribution of convection in the radial cross-section of the 
container, either enhancing or decreasing the effective local Rayleigh number, de- 
pending on the sign of y. In  fact in the stress-free case reference to figure 2 shows that, 
except for a small region of parameter space near IT = 1, y is positive provided that T is 
greater than a critical value which is a function of IT, and the onset of convection is then 
advanced. The effect is greatest a t  large values of T where we may generally expect a 
significant drop in the value of the Rayleigh number at which convection is first 
observed, possibly providing a partial explanation of the highly subcritical motions 
observed in water at T - 108 by Rossby (1969). 

Of the various experimental studies of convection in rotating systems only that of 
Koschmieder (1967) appears to provide details of the flow pattern at the onset of 
thermal instability. Other studies (e.g. Rossby 1969; Hudson, Abell & Tang 1978) tend 
to concentrate more on the heat flux properties of the system over wide parameter 
ranges. The flow pattern in the radial cross-section of the cylinder predicted by the 
present theory is a superposition of the centrifugal circulation and the motion due to 
the vertical instability, given to leading order by (3.6). A typical sequence of flow fields 
computed from (3.6) as the Rayleigh number increases is shown in figure 5.  Only the 
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interior solution has been used so that the solution ceases to be valid close t,o the 
vertical walls. However, the main features are remarkably similar to the series of 
flow patterns obtained by Koschmieder (1967), with a transition from a weak large- 
scale single-cell centrifugal circulation to  a strong regularly spaced multi-cellular 
pattern. One of the unexplained features of the experiments was the appearance of the 
first counter-roll (i.e a roll in the opposite sense to the centrifugal circulation) a t  the 
outer wall of the cylinder, despite the fact that the centrifugal circulation is weakest 
a t  the centre. However this behaviour is indeed a feature of figure 5; the boundary 
condition on A at s = 1 has the effect of making the thermal convection strongest at 
the outer wall and it is for this reason that the first counter-roll can develop there. 
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